Ingin mempelajari materi integral parsial secara lebih mendalam? Kamu bisa menyimak baik-baik pembahasan dari video yang ada di sini. Setelahnya, kamu bisa mengerjakan kuis berupa latihan soal untuk mengasah kemampuan.
Di sini, kamu akan belajar tentang Integral Parsial melalui video yang dibawakan oleh Bapak Anton Wardaya. Kamu akan diajak untuk memahami materi hingga metode menyelesaikan soal.
Selain itu, kamu juga akan mendapatkan latihan soal interaktif dalam 3 tingkat kesulitan (mudah, sedang, sukar). Dengan begitu, kamu bisa langsung mempraktikkan materi yang telah dijelaskan.
Sekarang, kamu bisa mulai belajar dengan 2 video dan 3 set latihan soal yang ada di halaman ini. Apabila materi ini berguna, bagikan ke teman atau rekan kamu supaya mereka juga mendapatkan manfaatnya.
Kamu dapat download modul & contoh soal serta kumpulan latihan soal lengkap dalam bentuk pdf pada list dibawah ini:
Contoh Soal Integral Parsial (1)
Contoh Soal Integral Parsial (2)
Latihan Soal Integral Parsial (Mudah)
Ringkasan kuis
0 dari 5 pertanyaan telah diselesaikan
Pertanyaan:
- 1
- 2
- 3
- 4
- 5
Informasi
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
Anda harus masuk atau mendaftar untuk memulai kuis.
Anda harus menyelesaikan kuis dibawah ini, untuk memulai kuis ini:
Hasil
Hasil
0 dari 5 pertanyaan terjawab dengan benar
Waktu yang telah berlalu
Kategori
- Tidak Berkategori 0%
- 1
- 2
- 3
- 4
- 5
- Terjawab
- Tinjau
-
Pertanyaan ke 1 dari 5
1. Pertanyaan
Nilai dari $\int x\sqrt{x+2}dx=…$
BetulMisalkan : $u=x$ $\rightarrow du=dx$
$dv=\sqrt{x+2}dx$
$\rightarrow v=\int\sqrt{x+2}dx$$=\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}$
$\begin{aligned}\int udv & =uv-\int vdu\\
\int x\sqrt{x+2} & =x\cdot\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}-\int\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}dx\\
& =x\cdot\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}-\frac{2}{3}\cdot\frac{2}{5}\left(x+2\right)^{\frac{5}{2}}+C\\
& =\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}\left\{ x-\frac{2}{5}\left(x+2\right)\right\} +C\\
& =\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}\left\{ \frac{5x-2(x+2)}{5}\right\} +C\\
& =\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}\left(\frac{3x-2}{5}\right)+C\\
& =\frac{2}{15}\left(3x-2\right)\left(x+2\right)\sqrt{x+2}+C
\end{aligned}
$SalahMisalkan : $u=x$ $\rightarrow du=dx$
$dv=\sqrt{x+2}dx$
$\rightarrow v=\int\sqrt{x+2}dx$$=\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}$
$\begin{aligned}\int udv & =uv-\int vdu\\
\int x\sqrt{x+2} & =x\cdot\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}-\int\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}dx\\
& =x\cdot\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}-\frac{2}{3}\cdot\frac{2}{5}\left(x+2\right)^{\frac{5}{2}}+C\\
& =\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}\left\{ x-\frac{2}{5}\left(x+2\right)\right\} +C\\
& =\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}\left\{ \frac{5x-2(x+2)}{5}\right\} +C\\
& =\frac{2}{3}\left(x+2\right)^{\frac{3}{2}}\left(\frac{3x-2}{5}\right)+C\\
& =\frac{2}{15}\left(3x-2\right)\left(x+2\right)\sqrt{x+2}+C
\end{aligned}
$ -
Pertanyaan ke 2 dari 5
2. Pertanyaan
Hasil dari $\int6x\left(3x-1\right)^{-\frac{1}{3}}dx=…$
BetulMisalkan $u=6x$$\rightarrow du=6dx$
$dv=\left(3x-1\right)^{-\frac{1}{3}}dx$
$\rightarrow v=\int\left(3x-1\right)^{-\frac{1}{3}}dx$$=\frac{1}{2}\left(3x-1\right)^{\frac{2}{3}}+c$
$\begin{aligned}\int u\, dv & =uv-\int v\, du\\
& =6x\cdot\frac{1}{2}\left(3x-1\right)^{\frac{2}{3}}-\int\frac{1}{2}\left(3x-1\right)^{\frac{2}{3}}\cdot6\, dx\\
& =3x\left(3x-1\right)^{\frac{2}{3}}-3\int\left(3x-1\right)^{\frac{2}{3}}\, dx\\
& =3x\left(3x-1\right)^{\frac{2}{3}}-3\cdot\frac{1}{5}\left(3x-1\right)^{\frac{5}{3}}+c\\
& =3x\left(3x-1\right)^{\frac{2}{3}}-\frac{3}{5}\left(3x-1\right)^{\frac{5}{3}}+c
\end{aligned}
$SalahMisalkan $u=6x$$\rightarrow du=6dx$
$dv=\left(3x-1\right)^{-\frac{1}{3}}dx$
$\rightarrow v=\int\left(3x-1\right)^{-\frac{1}{3}}dx$$=\frac{1}{2}\left(3x-1\right)^{\frac{2}{3}}+c$
$\begin{aligned}\int u\, dv & =uv-\int v\, du\\
& =6x\cdot\frac{1}{2}\left(3x-1\right)^{\frac{2}{3}}-\int\frac{1}{2}\left(3x-1\right)^{\frac{2}{3}}\cdot6\, dx\\
& =3x\left(3x-1\right)^{\frac{2}{3}}-3\int\left(3x-1\right)^{\frac{2}{3}}\, dx\\
& =3x\left(3x-1\right)^{\frac{2}{3}}-3\cdot\frac{1}{5}\left(3x-1\right)^{\frac{5}{3}}+c\\
& =3x\left(3x-1\right)^{\frac{2}{3}}-\frac{3}{5}\left(3x-1\right)^{\frac{5}{3}}+c
\end{aligned}
$ -
Pertanyaan ke 3 dari 5
3. Pertanyaan
Nilai dari $\int x\left(x+3\right)^{4}dx=…$
BetulMisalkan $u=x$$\rightarrow du=dx$
$dv=\left(x+3\right)^{4}dx$
$\begin{aligned}\rightarrow v & =\int\left(x+3\right)^{4}dx\\
& =\frac{1}{5}(x+3)^{5}+c
\end{aligned}
$$\begin{aligned}\int udv & =uv-\int vdu\\
\int x\left(x+3\right)^{4}\, dx & =x\cdot\frac{1}{5}(x+3)^{5}-\int\frac{1}{5}(x+3)^{5}\, dx\\
& =\frac{x}{5}(x+3)^{5}-\frac{1}{30}\left(x+3\right)^{6}+c\\
& =\frac{1}{5}\left(x+3\right)^{5}\left\{ x-\frac{1}{6}\left(x+3\right)\right\} +c\\
& =\frac{1}{5}\left(x+3\right)^{5}\left(\frac{6x-x-3}{6}\right)+c\\
& =\frac{1}{30}(x+3)^{5}(5x-3)+c
\end{aligned}
$SalahMisalkan $u=x$$\rightarrow du=dx$
$dv=\left(x+3\right)^{4}dx$
$\begin{aligned}\rightarrow v & =\int\left(x+3\right)^{4}dx\\
& =\frac{1}{5}(x+3)^{5}+c
\end{aligned}
$$\begin{aligned}\int udv & =uv-\int vdu\\
\int x\left(x+3\right)^{4}\, dx & =x\cdot\frac{1}{5}(x+3)^{5}-\int\frac{1}{5}(x+3)^{5}\, dx\\
& =\frac{x}{5}(x+3)^{5}-\frac{1}{30}\left(x+3\right)^{6}+c\\
& =\frac{1}{5}\left(x+3\right)^{5}\left\{ x-\frac{1}{6}\left(x+3\right)\right\} +c\\
& =\frac{1}{5}\left(x+3\right)^{5}\left(\frac{6x-x-3}{6}\right)+c\\
& =\frac{1}{30}(x+3)^{5}(5x-3)+c
\end{aligned}
$ -
Pertanyaan ke 4 dari 5
4. Pertanyaan
$\int\frac{x}{\sqrt{x+4}}dx=…$
BetulMisalkan $u=x\rightarrow du=dx$
$dv=\frac{1}{\sqrt{x+4}}dx$
$\begin{aligned}v & =\int\left(x+4\right)^{-\frac{1}{2}}\, dx\\
& =2\left(x+4\right)^{\frac{1}{2}}+c\\
& =2\sqrt{x+4}+c
\end{aligned}
$$\begin{aligned}\int u\, dv & =uv-\int v\, du\\
\int\frac{x}{\sqrt{x+4}}\mbox{dx} & =x\cdot2\left(x+4\right)^{\frac{1}{2}}-\int2\left(x+4\right)^{\frac{1}{2}}+c\\
& =2x\left(x+4\right)^{\frac{1}{2}}-\frac{4}{3}\left(x+4\right)^{\frac{3}{2}}+c\\
& =2\left(x+4\right)^{\frac{1}{2}}\left[x-\frac{2}{3}\left(x+4\right)\right]+c\\
& =2\sqrt{x+4}\left(\frac{3x-2x-8}{3}\right)+c\\
& =2\sqrt{x+4}\left(\frac{x-8}{3}\right)+c\\
& =\frac{2}{3}\left(x-8\right)\sqrt{x+4}+c
\end{aligned}
$SalahMisalkan $u=x\rightarrow du=dx$
$dv=\frac{1}{\sqrt{x+4}}dx$
$\begin{aligned}v & =\int\left(x+4\right)^{-\frac{1}{2}}\, dx\\
& =2\left(x+4\right)^{\frac{1}{2}}+c\\
& =2\sqrt{x+4}+c
\end{aligned}
$$\begin{aligned}\int u\, dv & =uv-\int v\, du\\
\int\frac{x}{\sqrt{x+4}}\mbox{dx} & =x\cdot2\left(x+4\right)^{\frac{1}{2}}-\int2\left(x+4\right)^{\frac{1}{2}}+c\\
& =2x\left(x+4\right)^{\frac{1}{2}}-\frac{4}{3}\left(x+4\right)^{\frac{3}{2}}+c\\
& =2\left(x+4\right)^{\frac{1}{2}}\left[x-\frac{2}{3}\left(x+4\right)\right]+c\\
& =2\sqrt{x+4}\left(\frac{3x-2x-8}{3}\right)+c\\
& =2\sqrt{x+4}\left(\frac{x-8}{3}\right)+c\\
& =\frac{2}{3}\left(x-8\right)\sqrt{x+4}+c
\end{aligned}
$ -
Pertanyaan ke 5 dari 5
5. Pertanyaan
$\int\frac{10x}{\sqrt[4]{2x-1}}\, dx=…$
BetulMisalkan $u=10x$ $\rightarrow du=10\, dx$
$dv=\frac{1}{\sqrt[4]{2x-1}}dx$
$\begin{aligned}v & =\int\left(2x-1\right)^{-\frac{1}{4}}dx\\
& =\frac{1}{2\left(-\frac{1}{4}+1\right)}\left(2x-1\right)^{-\frac{1}{4}+1}\\
& =\frac{2}{3}\left(2x-1\right)^{\frac{3}{4}}+c
\end{aligned}
$$\int u\, dv=uv-\int v\, du$
$\int\frac{10x}{\sqrt[4]{2x-1}}\, dx$$=10x\cdot\frac{2}{3}\left(2x-1\right)^{\frac{3}{4}}-\int10\cdot\frac{2}{3}\left(2x-1\right)^{\frac{3}{4}}dx$
$=\frac{20x}{3}\left(2x-1\right)^{\frac{3}{4}}-\frac{20}{3}\int\left(2x-1\right)^{\frac{3}{4}}dx$
$=\frac{20x}{3}\left(2x-1\right)^{\frac{3}{4}}-\frac{20}{3}\cdot\frac{2}{7}\left(2x-1\right)^{\frac{7}{4}}+c$
$=\frac{20}{3}\left(2x-1\right)^{\frac{3}{4}}\left\{ x-\frac{2}{7}\left(2x-1\right)\right\} +c$
$=\frac{20}{3}\left(2x-1\right)^{\frac{3}{4}}\left(\frac{7x-4x+2}{7}\right)+c$
$=\frac{20x}{3}\left(2x-1\right)^{\frac{3}{4}}\left(\frac{3x+2}{7}\right)+c$
$=\frac{20x}{21}(3x+2)\left(2x-1\right)^{\frac{3}{4}}+c.$
SalahMisalkan $u=10x$ $\rightarrow du=10\, dx$
$dv=\frac{1}{\sqrt[4]{2x-1}}dx$
$\begin{aligned}v & =\int\left(2x-1\right)^{-\frac{1}{4}}dx\\
& =\frac{1}{2\left(-\frac{1}{4}+1\right)}\left(2x-1\right)^{-\frac{1}{4}+1}\\
& =\frac{2}{3}\left(2x-1\right)^{\frac{3}{4}}+c
\end{aligned}
$$\int u\, dv=uv-\int v\, du$
$\int\frac{10x}{\sqrt[4]{2x-1}}\, dx$$=10x\cdot\frac{2}{3}\left(2x-1\right)^{\frac{3}{4}}-\int10\cdot\frac{2}{3}\left(2x-1\right)^{\frac{3}{4}}dx$
$=\frac{20x}{3}\left(2x-1\right)^{\frac{3}{4}}-\frac{20}{3}\int\left(2x-1\right)^{\frac{3}{4}}dx$
$=\frac{20x}{3}\left(2x-1\right)^{\frac{3}{4}}-\frac{20}{3}\cdot\frac{2}{7}\left(2x-1\right)^{\frac{7}{4}}+c$
$=\frac{20}{3}\left(2x-1\right)^{\frac{3}{4}}\left\{ x-\frac{2}{7}\left(2x-1\right)\right\} +c$
$=\frac{20}{3}\left(2x-1\right)^{\frac{3}{4}}\left(\frac{7x-4x+2}{7}\right)+c$
$=\frac{20x}{3}\left(2x-1\right)^{\frac{3}{4}}\left(\frac{3x+2}{7}\right)+c$
$=\frac{20x}{21}(3x+2)\left(2x-1\right)^{\frac{3}{4}}+c.$
Latihan Soal Integral Parsial (Sedang)
Ringkasan kuis
0 dari 5 pertanyaan telah diselesaikan
Pertanyaan:
- 1
- 2
- 3
- 4
- 5
Informasi
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
Anda harus masuk atau mendaftar untuk memulai kuis.
Anda harus menyelesaikan kuis dibawah ini, untuk memulai kuis ini:
Hasil
Hasil
0 dari 5 pertanyaan terjawab dengan benar
Waktu yang telah berlalu
Kategori
- Tidak Berkategori 0%
- 1
- 2
- 3
- 4
- 5
- Terjawab
- Tinjau
-
Pertanyaan ke 1 dari 5
1. Pertanyaan
$\int_{0}^{\frac{\pi}{2}}x\cdot cosx\, dx=…$
BetulMisalkan $u=x$$\rightarrow du=dx$
$dv=cosx\, dx$
$\begin{aligned}v & =\int cosx\, dx\\
& =sinx+c
\end{aligned}
$$\begin{aligned}\int udv & =uv-\int vdu\\
\int x\cdot cosx\, dx & =x\cdot sinx-\int sinx\, dx\\
& =x\cdot sinx+cosx+c
\end{aligned}
$$\int_{0}^{\frac{\pi}{2}}x\cdot cosx\mbox{ }dx$$=\left[x\cdot sinx+cosx\right]_{0}^{\frac{\pi}{2}}$
$=\left(\frac{\pi}{2}\cdot sin\frac{\pi}{2}+cos\frac{\pi}{2}\right)-\left(0\cdot sin0+cos0\right)$
$=\left(\frac{\pi}{2}\right)-1.$
SalahMisalkan $u=x$$\rightarrow du=dx$
$dv=cosx\, dx$
$\begin{aligned}v & =\int cosx\, dx\\
& =sinx+c
\end{aligned}
$$\begin{aligned}\int udv & =uv-\int vdu\\
\int x\cdot cosx\, dx & =x\cdot sinx-\int sinx\, dx\\
& =x\cdot sinx+cosx+c
\end{aligned}
$$\int_{0}^{\frac{\pi}{2}}x\cdot cosx\mbox{ }dx$$=\left[x\cdot sinx+cosx\right]_{0}^{\frac{\pi}{2}}$
$=\left(\frac{\pi}{2}\cdot sin\frac{\pi}{2}+cos\frac{\pi}{2}\right)-\left(0\cdot sin0+cos0\right)$
$=\left(\frac{\pi}{2}\right)-1.$
-
Pertanyaan ke 2 dari 5
2. Pertanyaan
$\int_{0}^{2\pi}\left(\frac{1}{2}x+1\right)sin\frac{1}{4}x\, dx=…$
BetulMisalkan $u=\left(\frac{1}{2}x+1\right)$$\rightarrow du=\frac{1}{2}\, dx$
$dv=sin\frac{1}{4}x\, dx$
$\begin{aligned}v & =\int sin\frac{1}{4}x\, dx\\
& =-4cos\frac{1}{4}x+c
\end{aligned}
$$\int u\, dv$$=uv-\int v\, du$
$\int\left(\frac{1}{2}x+1\right)sin\frac{1}{4}x\mbox{ }dx$$=\left(\frac{1}{2}x+1\right)$$\cdot\left(-4cos\frac{1}{4}x\right)-\int\frac{1}{2}\cdot\left(-4cos\frac{1}{4}x\right)dx$
$=\left(-2x-4\right)cos\frac{1}{4}x+2\int cos\frac{1}{4}x\, dx$
$=\left(-2x-4\right)cos\frac{1}{4}x+8sin\frac{1}{4}x+c$
$\int_{0}^{2\pi}\left(\frac{1}{2}x+1\right)sin\frac{1}{4}x\mbox{ }dx$$=\left[\left(-2x-4\right)cos\frac{1}{4}x+8sin\frac{1}{4}x\right]_{0}^{2\pi}$
$=\left[\left(-2\cdot2\pi-4\right)cos\frac{2\pi}{4}+8sin\frac{2\pi}{4}\right]$$-\left[\left(-2\cdot0-4\right)cos0+8sin0\right]$
$=\left(8\right)-\left(-4+0\right)$
$=8+4=12.$
SalahMisalkan $u=\left(\frac{1}{2}x+1\right)$$\rightarrow du=\frac{1}{2}\, dx$
$dv=sin\frac{1}{4}x\, dx$
$\begin{aligned}v & =\int sin\frac{1}{4}x\, dx\\
& =-4cos\frac{1}{4}x+c
\end{aligned}
$$\int u\, dv$$=uv-\int v\, du$
$\int\left(\frac{1}{2}x+1\right)sin\frac{1}{4}x\mbox{ }dx$$=\left(\frac{1}{2}x+1\right)$$\cdot\left(-4cos\frac{1}{4}x\right)-\int\frac{1}{2}\cdot\left(-4cos\frac{1}{4}x\right)dx$
$=\left(-2x-4\right)cos\frac{1}{4}x+2\int cos\frac{1}{4}x\, dx$
$=\left(-2x-4\right)cos\frac{1}{4}x+8sin\frac{1}{4}x+c$
$\int_{0}^{2\pi}\left(\frac{1}{2}x+1\right)sin\frac{1}{4}x\mbox{ }dx$$=\left[\left(-2x-4\right)cos\frac{1}{4}x+8sin\frac{1}{4}x\right]_{0}^{2\pi}$
$=\left[\left(-2\cdot2\pi-4\right)cos\frac{2\pi}{4}+8sin\frac{2\pi}{4}\right]$$-\left[\left(-2\cdot0-4\right)cos0+8sin0\right]$
$=\left(8\right)-\left(-4+0\right)$
$=8+4=12.$
-
Pertanyaan ke 3 dari 5
3. Pertanyaan
$\int2x^{2}\cdot sin2x\, dx= . . . .$
BetulMisalkan $u=2x^{2}$$\rightarrow du=4x\, dx$
$dv=sin2x\, dx$
$v=\int sin2x\, dx$$=-\frac{1}{2}cos2x+c$
$\int udv=uv-\int vdu$
$=2x^{2}\cdot\left(-\frac{1}{2}cos2x\right)$$-\int4x\cdot\left(-\frac{1}{2}cos2x\right)dx+c$
$=-x^{2}\cdot cos2x+2\int x\cdot cos2x\, dx+c$
$\int x\cdot cos2x\, dx$ cari dengan integral parsial juga :
$\begin{aligned}\int x\cdot cos2x\, dx & =x\left(\frac{1}{2}sin2x\right)-\int\frac{1}{2}sin2x\, dx\\
& =\frac{x}{2}sin2x+\frac{1}{4}cos2x+c
\end{aligned}
$$\int2x^{2}\cdot sin2x\, dx$$=-x^{2}\cdot cos2x+2\int x\cdot cos2x\, dx+c$
$=-x^{2}\cdot cos2x+2\left(\frac{x}{2}sin2x+\frac{1}{4}cos2x\right)+c$
$=-x^{2}\cdot cos2x+x\cdot sin2x+\frac{1}{2}cos2x+c$.
SalahMisalkan $u=2x^{2}$$\rightarrow du=4x\, dx$
$dv=sin2x\, dx$
$v=\int sin2x\, dx$$=-\frac{1}{2}cos2x+c$
$\int udv=uv-\int vdu$
$=2x^{2}\cdot\left(-\frac{1}{2}cos2x\right)$$-\int4x\cdot\left(-\frac{1}{2}cos2x\right)dx+c$
$=-x^{2}\cdot cos2x+2\int x\cdot cos2x\, dx+c$
$\int x\cdot cos2x\, dx$ cari dengan integral parsial juga :
$\begin{aligned}\int x\cdot cos2x\, dx & =x\left(\frac{1}{2}sin2x\right)-\int\frac{1}{2}sin2x\, dx\\
& =\frac{x}{2}sin2x+\frac{1}{4}cos2x+c
\end{aligned}
$$\int2x^{2}\cdot sin2x\, dx$$=-x^{2}\cdot cos2x+2\int x\cdot cos2x\, dx+c$
$=-x^{2}\cdot cos2x+2\left(\frac{x}{2}sin2x+\frac{1}{4}cos2x\right)+c$
$=-x^{2}\cdot cos2x+x\cdot sin2x+\frac{1}{2}cos2x+c$.
-
Pertanyaan ke 4 dari 5
4. Pertanyaan
$\int\left(x^{2}+1\right)cosx\, dx=…$
BetulMisalkan : $u=(x^{2}+1)\rightarrow du=2x\, dx$
$dv=cosx$$dx$
$\rightarrow v=\int cosxdx=sinx+c$
$\int udv=uv-\int vdu$
$\int\left(x^{2}+1\right)cosx\, dx$$=\left(x^{2}+1\right)sinx-\int sinx\,2x\, dx $
untuk $\int2x\cdot sinx\, dx$ harus menggunakan integral parsial lagi :
$\begin{aligned}\int2x\cdot sinx\, dx & =2x\cdot(-cosx)-\int2\cdot(-cosx)dx\\
& =-2xcosx+2sinx+c
\end{aligned}
$$\int\left(x^{2}+1\right)cosxdx$$=\left(x^{2}+1\right)sinx-\int sinx\,2x\, dx$
$=\left(x^{2}+1\right)sinx-\left(-2xcosx+2sinx\right)+c$
$=\left(x^{2}+1\right)sinx+2x\cdot cosx-2sinx+c$
$=\left(x^{2}+1-2\right)sinx+2x\cdot cosx+c$
$=\left(x^{2}-1\right)sinx+2x\cdot cosx+c.$
SalahMisalkan : $u=(x^{2}+1)\rightarrow du=2x\, dx$
$dv=cosx$$dx$
$\rightarrow v=\int cosxdx=sinx+c$
$\int udv=uv-\int vdu$
$\int\left(x^{2}+1\right)cosx\, dx$$=\left(x^{2}+1\right)sinx-\int sinx\,2x\, dx $
untuk $\int2x\cdot sinx\, dx$ harus menggunakan integral parsial lagi :
$\begin{aligned}\int2x\cdot sinx\, dx & =2x\cdot(-cosx)-\int2\cdot(-cosx)dx\\
& =-2xcosx+2sinx+c
\end{aligned}
$$\int\left(x^{2}+1\right)cosxdx$$=\left(x^{2}+1\right)sinx-\int sinx\,2x\, dx$
$=\left(x^{2}+1\right)sinx-\left(-2xcosx+2sinx\right)+c$
$=\left(x^{2}+1\right)sinx+2x\cdot cosx-2sinx+c$
$=\left(x^{2}+1-2\right)sinx+2x\cdot cosx+c$
$=\left(x^{2}-1\right)sinx+2x\cdot cosx+c.$
-
Pertanyaan ke 5 dari 5
5. Pertanyaan
$\int3x\cdot sec^{2}6x\, dx=…$
BetulMisalkan $u=3x$$\rightarrow du=3dx$
$dv=sec^{2}6x$$dx$
$v=\int sec^{2}6x\, dx=\frac{1}{6}tan\,6x+c$
$\int u\, dv$$=uv-\int v\, du$
$\int3x\cdot sec^{2}6x\, dx$$=3x\cdot\frac{1}{6}tan6x-\int3\cdot\frac{1}{6}tan6x\, dx$
$=\frac{x}{2}tan6x-\frac{1}{2}\int tan\,6x\, dx$
$=\frac{x}{2}tan6x-\frac{1}{12}\ln\left|sec\,6x\right|+c$
$=\frac{x}{2}tan6x-\frac{1}{12}\ln\left|sec\,6x\right|+c.$
SalahMisalkan $u=3x$$\rightarrow du=3dx$
$dv=sec^{2}6x$$dx$
$v=\int sec^{2}6x\, dx=\frac{1}{6}tan\,6x+c$
$\int u\, dv$$=uv-\int v\, du$
$\int3x\cdot sec^{2}6x\, dx$$=3x\cdot\frac{1}{6}tan6x-\int3\cdot\frac{1}{6}tan6x\, dx$
$=\frac{x}{2}tan6x-\frac{1}{2}\int tan\,6x\, dx$
$=\frac{x}{2}tan6x-\frac{1}{12}\ln\left|sec\,6x\right|+c$
$=\frac{x}{2}tan6x-\frac{1}{12}\ln\left|sec\,6x\right|+c.$
Latihan Soal Integral Parsial (Sukar)
Ringkasan kuis
0 dari 5 pertanyaan telah diselesaikan
Pertanyaan:
- 1
- 2
- 3
- 4
- 5
Informasi
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
Anda harus masuk atau mendaftar untuk memulai kuis.
Anda harus menyelesaikan kuis dibawah ini, untuk memulai kuis ini:
Hasil
Hasil
0 dari 5 pertanyaan terjawab dengan benar
Waktu yang telah berlalu
Kategori
- Tidak Berkategori 0%
- 1
- 2
- 3
- 4
- 5
- Terjawab
- Tinjau
-
Pertanyaan ke 1 dari 5
1. Pertanyaan
Berapakah hasil dari integral $\int x\sin(x)\, dx$ ?
BetulAmbil,
$u=x$
$dv=\sin(x)dx$
$du=dx$
$v=-\cos(x)$
Maka
$\begin{aligned}\int x\sin(x)dx & =uv-\int v\, du\\
& =-x\cos(x)+\int\cos(x)dx\\
& =-x\cos(x)+\sin(x)+c.
\end{aligned}
$SalahAmbil,
$u=x$
$dv=\sin(x)dx$
$du=dx$
$v=-\cos(x)$
Maka
$\begin{aligned}\int x\sin(x)dx & =uv-\int v\, du\\
& =-x\cos(x)+\int\cos(x)dx\\
& =-x\cos(x)+\sin(x)+c.
\end{aligned}
$ -
Pertanyaan ke 2 dari 5
2. Pertanyaan
Berapakah hasil dari integral $\int x^{2}\cos(x)\, dx$?
BetulAmbil,
$u=x$
$dv=\sin(x)dx$
$du=dx$
$v=-\cos(x)$
Maka
$\begin{aligned}\int x\sin(x)dx & =uv-\int v\mbox{ }du\\
& =-x\cos(x)+\int\cos(x)dx\\
& =-x\cos(x)+\sin(x)+c
\end{aligned}
$Maka
$\begin{aligned}\int x^{2}\cos(x)dx & =uv-\int vdu\\
& =x^{2}\sin(x)-2\int x\sin(x)dx
\end{aligned}
$$\int x\sin(x)dx=-x\cos(x)+\sin(x)+c$, jadi
$\int x^{2}\cos(x)dx=x^{2}\sin(x)$$+2x\cos(x)-2\sin(x)+c.$
SalahAmbil,
$u=x$
$dv=\sin(x)dx$
$du=dx$
$v=-\cos(x)$
Maka
$\begin{aligned}\int x\sin(x)dx & =uv-\int v\mbox{ }du\\
& =-x\cos(x)+\int\cos(x)dx\\
& =-x\cos(x)+\sin(x)+c
\end{aligned}
$Maka
$\begin{aligned}\int x^{2}\cos(x)dx & =uv-\int vdu\\
& =x^{2}\sin(x)-2\int x\sin(x)dx
\end{aligned}
$$\int x\sin(x)dx=-x\cos(x)+\sin(x)+c$, jadi
$\int x^{2}\cos(x)dx=x^{2}\sin(x)$$+2x\cos(x)-2\sin(x)+c.$
-
Pertanyaan ke 3 dari 5
3. Pertanyaan
Berapakah hasil dari integral $\int\sin(\sqrt{x})\, dx$?
BetulAmbil,
$u=\sin(\sqrt{x})$
$dv=dx$
$du=\frac{1}{2\sqrt{x}}\cos(\sqrt{x})dx$
$v=x$
Maka
$\begin{aligned}\int\sin(\sqrt{x})dx & =uv-\int vdu\\
& =x\sin(\sqrt{x})-\int\frac{1}{2}\sqrt{x}\cos(\sqrt{x})dx
\end{aligned}
$Tulis $z=\sqrt{x}$, maka $dz=\frac{1}{2\sqrt{x}}dx$.
Jadi
$\begin{aligned}\int\sin(\sqrt{x})\, dx & =x\sin(\sqrt{x})-\int x\cos(\sqrt{x})\, dz\\
& =x\sin(\sqrt{x})-\int z^{2}\cos(z)\, dz
\end{aligned}
$Ambil,
$u=x$
$dv=\sin(x)\, dx$
$du=dx$
$v=-\cos(x)$
Maka
$\begin{aligned}\int x\sin(x)\, dx & =uv-\int v\, du\\
& =-x\cos(x)+\int\cos(x)\, dx\\
& =-x\cos(x)+\sin(x)+c
\end{aligned}
$Maka
$\begin{aligned}\int x^{2}\cos(x)\, dx & =uv-\int v\, du\\
& =x^{2}\sin(x)-2\int x\sin(x)\, dx
\end{aligned}
$$\int x\sin(x)dx=-x\cos(x)$$+\sin(x)+c$, jadi
$\int x^{2}\cos(x)dx=x^{2}\sin(x)$$+2x\cos(x)-2\sin(x)+c$
Jadi
$\int\sin(\sqrt{x})dx$$=x\sin(\sqrt{x})-x\sin(\sqrt{x})$$-2\sqrt{x}\cos(\sqrt{x})+2\sin(\sqrt{x})+c$
$=-2\sqrt{x}\cos(\sqrt{x})$$+2\sin(\sqrt{x})+c.$
SalahAmbil,
$u=\sin(\sqrt{x})$
$dv=dx$
$du=\frac{1}{2\sqrt{x}}\cos(\sqrt{x})dx$
$v=x$
Maka
$\begin{aligned}\int\sin(\sqrt{x})dx & =uv-\int vdu\\
& =x\sin(\sqrt{x})-\int\frac{1}{2}\sqrt{x}\cos(\sqrt{x})dx
\end{aligned}
$Tulis $z=\sqrt{x}$, maka $dz=\frac{1}{2\sqrt{x}}dx$.
Jadi
$\begin{aligned}\int\sin(\sqrt{x})\, dx & =x\sin(\sqrt{x})-\int x\cos(\sqrt{x})\, dz\\
& =x\sin(\sqrt{x})-\int z^{2}\cos(z)\, dz
\end{aligned}
$Ambil,
$u=x$
$dv=\sin(x)\, dx$
$du=dx$
$v=-\cos(x)$
Maka
$\begin{aligned}\int x\sin(x)\, dx & =uv-\int v\, du\\
& =-x\cos(x)+\int\cos(x)\, dx\\
& =-x\cos(x)+\sin(x)+c
\end{aligned}
$Maka
$\begin{aligned}\int x^{2}\cos(x)\, dx & =uv-\int v\, du\\
& =x^{2}\sin(x)-2\int x\sin(x)\, dx
\end{aligned}
$$\int x\sin(x)dx=-x\cos(x)$$+\sin(x)+c$, jadi
$\int x^{2}\cos(x)dx=x^{2}\sin(x)$$+2x\cos(x)-2\sin(x)+c$
Jadi
$\int\sin(\sqrt{x})dx$$=x\sin(\sqrt{x})-x\sin(\sqrt{x})$$-2\sqrt{x}\cos(\sqrt{x})+2\sin(\sqrt{x})+c$
$=-2\sqrt{x}\cos(\sqrt{x})$$+2\sin(\sqrt{x})+c.$
-
Pertanyaan ke 4 dari 5
4. Pertanyaan
Berapakah hasil dari integral $\int\sin(\sqrt{4x-2})\, dx$ ?
BetulAmbil
$u=\sin(\sqrt{x})$
$dv=dx$
$du=\frac{1}{2\sqrt{x}}\cos(\sqrt{x})dx$
$v=x$
Maka
$\begin{aligned}\int\sin(\sqrt{x})\, dx & =uv-\int v\, du\\
& =x\sin(\sqrt{x})-\int\frac{1}{2}\sqrt{x}\cos(\sqrt{x})dx
\end{aligned}
$Tulis $z=\sqrt{x}$, maka $dz=\frac{1}{2\sqrt{x}}\, dx$.
Jadi
$\begin{aligned}\int\sin(\sqrt{x})\, dx & =x\sin(\sqrt{x})-\int x\cos(\sqrt{x})\, dz\\
& =x\sin(\sqrt{x})-\int z^{2}\cos(z)\, dz
\end{aligned}
$Ambil,
$u=x$
$dv=\sin(x)\, dx$
$du=dx$
$v=-\cos(x)$
Maka
$\begin{aligned}\int x\sin(x)\, dx & =uv-\int v\, du\\
& =-x\cos(x)+\int\cos(x)\, dx\\
& =-x\cos(x)+\sin(x)+c
\end{aligned}
$Maka
$\begin{aligned}\int x^{2}\cos(x)\, dx & =uv-\int v\, du\\
& =x^{2}\sin(x)-2\int x\sin(x)\, dx
\end{aligned}
$$\int x\sin(x)dx=-x\cos(x)+\sin(x)+c$, jadi
$\int x^{2}\cos(x)dx=x^{2}\sin(x)$$+2x\cos(x)-2\sin(x)+c$
$\begin{aligned}\end{aligned}
$Jadi$\int\sin(\sqrt{x})dx$$=x\sin(\sqrt{x})-x\sin(\sqrt{x})$$-2\sqrt{x}\cos(\sqrt{x})+2\sin(\sqrt{x})+c$
$=-2\sqrt{x}\cos(\sqrt{x})+2\sin(\sqrt{x})+c$
$\int\sin(\sqrt{4x-2})dx$$=\frac{1}{4}(-2\sqrt{u}\cos(\sqrt{u})+2\sin(\sqrt{u}))+c$
$=-\frac{1}{2}\sqrt{4x-2}\cos(\sqrt{4x-2})$$+\frac{1}{2}\sin(\sqrt{4x-2})+c.$
SalahAmbil
$u=\sin(\sqrt{x})$
$dv=dx$
$du=\frac{1}{2\sqrt{x}}\cos(\sqrt{x})dx$
$v=x$
Maka
$\begin{aligned}\int\sin(\sqrt{x})\, dx & =uv-\int v\, du\\
& =x\sin(\sqrt{x})-\int\frac{1}{2}\sqrt{x}\cos(\sqrt{x})dx
\end{aligned}
$Tulis $z=\sqrt{x}$, maka $dz=\frac{1}{2\sqrt{x}}\, dx$.
Jadi
$\begin{aligned}\int\sin(\sqrt{x})\, dx & =x\sin(\sqrt{x})-\int x\cos(\sqrt{x})\, dz\\
& =x\sin(\sqrt{x})-\int z^{2}\cos(z)\, dz
\end{aligned}
$Ambil,
$u=x$
$dv=\sin(x)\, dx$
$du=dx$
$v=-\cos(x)$
Maka
$\begin{aligned}\int x\sin(x)\, dx & =uv-\int v\, du\\
& =-x\cos(x)+\int\cos(x)\, dx\\
& =-x\cos(x)+\sin(x)+c
\end{aligned}
$Maka
$\begin{aligned}\int x^{2}\cos(x)\, dx & =uv-\int v\, du\\
& =x^{2}\sin(x)-2\int x\sin(x)\, dx
\end{aligned}
$$\int x\sin(x)dx=-x\cos(x)+\sin(x)+c$, jadi
$\int x^{2}\cos(x)dx=x^{2}\sin(x)$$+2x\cos(x)-2\sin(x)+c$
$\begin{aligned}\end{aligned}
$Jadi$\int\sin(\sqrt{x})dx$$=x\sin(\sqrt{x})-x\sin(\sqrt{x})$$-2\sqrt{x}\cos(\sqrt{x})+2\sin(\sqrt{x})+c$
$=-2\sqrt{x}\cos(\sqrt{x})+2\sin(\sqrt{x})+c$
$\int\sin(\sqrt{4x-2})dx$$=\frac{1}{4}(-2\sqrt{u}\cos(\sqrt{u})+2\sin(\sqrt{u}))+c$
$=-\frac{1}{2}\sqrt{4x-2}\cos(\sqrt{4x-2})$$+\frac{1}{2}\sin(\sqrt{4x-2})+c.$
-
Pertanyaan ke 5 dari 5
5. Pertanyaan
Berapakah hasil dari integral $\int x^{3}\sin(x)\, dx$?
BetulAmbil;
$u=x$
$dv=\sin(x)\, dx$
$du=dx$
$v=-\cos(x)$
Maka,
$\begin{aligned}\int x\sin(x)\, dx & =uv-\int v\, du\\
& =-x\cos(x)+\int\cos(x)\, dx\\
& =-x\cos(x)+\sin(x)+c
\end{aligned}
$Maka
$\begin{aligned}\int x^{2}\cos(x)dx & =uv-\int v\, du\\
& =x^{2}\sin(x)-2\int x\sin(x)\, dx
\end{aligned}
$$\int x\sin(x)\, dx=-x\cos(x)+\sin(x)+c$, jadi
$\int x^{2}\cos(x)dx=x^{2}\sin(x)$$+2x\cos(x)-2\sin(x)+c$
$\int x^{3}\sin(x)dx$$=-x^{3}\cos(x)+3x^{2}\sin(x)$$+6x\cos(x)-6\sin(x)+c.$
SalahAmbil;
$u=x$
$dv=\sin(x)\, dx$
$du=dx$
$v=-\cos(x)$
Maka,
$\begin{aligned}\int x\sin(x)\, dx & =uv-\int v\, du\\
& =-x\cos(x)+\int\cos(x)\, dx\\
& =-x\cos(x)+\sin(x)+c
\end{aligned}
$Maka
$\begin{aligned}\int x^{2}\cos(x)dx & =uv-\int v\, du\\
& =x^{2}\sin(x)-2\int x\sin(x)\, dx
\end{aligned}
$$\int x\sin(x)\, dx=-x\cos(x)+\sin(x)+c$, jadi
$\int x^{2}\cos(x)dx=x^{2}\sin(x)$$+2x\cos(x)-2\sin(x)+c$
$\int x^{3}\sin(x)dx$$=-x^{3}\cos(x)+3x^{2}\sin(x)$$+6x\cos(x)-6\sin(x)+c.$